1. Beerthuis, Rolf, Nienke L. Visser, Jessi E. S. van der Hoeven, Peter Ngene, Jon M. S. Deeley, Glenn J. Sunley, Krijn P. de Jong, and Petra E. de Jongh. “Manganese Oxide Promoter Effects in the Copper-Catalyzed Hydrogenation of Ethyl Acetate.” Journal of Catalysis 394 (February 1, 2021): 307–15. https://doi.org/10.1016/j.jcat.2020.11.003..
  2. Petrazzuoli, Vittorio, Matthieu Rolland, Adrien Mekki-Berrada, Olivier Said-Aizpuru, and Yves Schuurman. “Choosing the Right Packing in Millipacked Bed Reactors under Single Phase Gas Flow.” Chemical Engineering Science 231 (February 15, 2021): 116314. https://doi.org/10.1016/j.ces.2020.116314.


  1. Dalebout, Remco, Nienke L. Visser, C. E. Lisette Pompe, Krijn P. de Jong, and Petra E. de Jongh. “Interplay between Carbon Dioxide Enrichment and Zinc Oxide Promotion of Copper Catalysts in Methanol Synthesis.” Journal of Catalysis 392 (December 1, 2020): 150–58. https://doi.org/10.1016/j.jcat.2020.10.006..
  2. Harmel, Justine, Tegan Roberts, Zhaorong Zhang, Glenn Sunley, Petra de Jongh, and Krijn P. de Jong. “Bifunctional Molybdenum Oxide/Acid Catalysts for Hydroisomerization of n-Heptane.” Journal of Catalysis 390 (October 1, 2020): 161–69. https://doi.org/10.1016/j.jcat.2020.08.004..
  3. Oenema, Jogchum, Renée A. van Alst, Mark J. Meijerink, Jovana Zečević, and Krijn P. de Jong. “The Influence of Residual Chlorine on Pt/Zeolite Y/γ-Al2O3 Composite Catalysts: Acidity and Performance.” Applied Catalysis A: General 605 (September 5, 2020): 117815. https://doi.org/10.1016/j.apcata.2020.117815..
  4. Rodriguez‐Gomez, A.; Lopez‐Martin, A.; Ramirez, A.; Gascon, J.; Caballero, A. Elucidating the Promotional Effect of Cerium in the Dry Reforming of Methane. ChemCatChem. https://doi.org/https://doi.org/10.1002/cctc.202001527.
  5. Ramirez, A.; Lee, K.; Harale, A.; Gevers, L.; Telalovic, S.; Solami, B. A.; Gascon, J. Stable High-Pressure Methane Dry Reforming Under Excess of CO2. ChemCatChem 2020, 12 (23), 5919–5925. https://doi.org/https://doi.org/10.1002/cctc.202001049.
  6. Khan, I. S.; Ramirez, A.; Shterk, G.; Garzón-Tovar, L.; Gascon, J. Bimetallic Metal-Organic Framework Mediated Synthesis of Ni-Co Catalysts for the Dry Reforming of Methane. Catalysts 2020, 10 (5), 592. .
  7. Krans, N. A.; Weber, J. L.; Van den Bosch, W.; Zečević, J.; de Jongh, P. E.; de Jong, K. P. Influence of Promotion on the Growth of Anchored Colloidal Iron Oxide Nanoparticles during Synthesis Gas Conversion. ACS Catal. 2020. https://doi.org/10.1021/acscatal.9b04380.
  8. Weber, J. L.; Krans, N. A.; Hofmann, J. P.; Hensen, E. J. M.; Zečević, J.; de Jongh, P. E.; de Jong, K. P. Effect of Proximity and Support Material on Deactivation of Bifunctional Catalysts for the Conversion of Synthesis Gas to Olefins and Aromatics. Catalysis Today 2020, 342, 161 – 166.https://doi.org/10.1016/j.cattod.2019.02.002.
  9. Dokania, A.; Dutta Chowdhury, A.; Ramirez, A.; Telalovic, S.; Abou-Hamad, E.; Gevers, L.; Ruiz-Martinez, J.; Gascon, J. Acidity Modification of ZSM-5 for Enhanced Production of Light Olefins from CO2. Journal of Catalysis 2020, 381, 347-354. https://doi.org/10.1016/j.jcat.2019.11.015.


  1. Ramirez, A.; Dutta Chowdhury, A.; Dokania, A.; Cnudde, P.; Caglayan, M.; Yarulina, I.; Abou-Hamad, E.; Gevers, L.; Ould-Chikh, S.; De Wispelaere, K.; et al. Effect of Zeolite Topology and Reactor Configuration on the Direct Conversion of CO2 to Light Olefins and Aromatics. ACS Catal. 2019, 9 (7), 6320-6334. https://doi.org/10.1021/acscatal.9b01466.
  2. Bavykina, A.; Yarulina, I.; Al Abdulghani, A. J.; Gevers, L.; Hedhili, M. N.; Miao, X.; Galilea, A. R.; Pustovarenko, A.; Dikhtiarenko, A.; Cadiau, A.; et al. Turning a Methanation Co Catalyst into an In-Co Methanol Producer. ACS Catal. 2019, 9 (8), 6910 – 6918. https://doi.org/10.1021/acscatal.9b01638.
  3. Ishikawa, S.; Murayama, T.; Katryniok, B.; Dumeignil, F.; Araque, M.; Heyte, S.; Paul, S.; Yamada, Y.; Iwazaki, M.; Noda, N.; et al. Influence of the Structure of Trigonal Mo-V-M3rd Oxides (M3rd =-, Fe, Cu, W) on Catalytic Performances in Selective Oxidations of Ethane, Acrolein, and Allyl Alcohol. Applied Catalysis A: General 2019, 584, 117151. https://doi.org/10.1016/j.apcata.2019.117151.
  4. Wang, J.; Huang, S.; Howard, S.; Muir, B. W.; Wang, H.; Kennedy, D. F.; Ma, X. Elucidating Surface and Bulk Phase Transformation in Fische-Tropsch Synthesis Catalysts and Their Influences on Catalytic Performance. ACS Catal. 2019, 9 (9), 7976-7983. https://doi.org/10.1021/acscatal.9b01104.
  5. Li, G.; Jiao, F.; Miao, D.; Wang, Y.; Pan, X.; Yokoi, T.; Meng, X.; Xiao, F.-S.; Parvulescu, A.-N.; Müller, U.; et al. Selective Conversion of Syngas to Propane over ZnCrOx-SSZ-39 OX-ZEO Catalysts. Journal of Energy Chemistry 2019, 36, 141 – 147. https://doi.org/10.1016/j.jechem.2019.07.006.
  6. van Zandvoort, I.; van der Waal, J. K.; Ras, E.-J.; de Graaf, R.; Krishna, R. Highlighting Non-Idealities in C2H4/CO2 Mixture Adsorption in 5A Zeolite. Separation and Purification Technology 2019, 227, 115730. https://doi.org/10.1016/j.seppur.2019.115730.
  7. Vilela, T.; Castro, J.; Dathe, H. Impact of sulphiding agents on ULSD catalyst performance. PTQ Catalysis 2019, 19-21. http://www.eptq.com/view_article.aspx?intAID=1720.
  8. Xie, J.; Paalanen, P. P.; Deelen, T. W. van; Weckhuysen, B. M.; Louwerse, M. J.; Jong, K. P. de. Promoted Cobalt Metal Catalysts Suitable for the Production of Lower Olefins from Natural Gas. Nature Communications 2019, 10 (1), 167. https://doi.org/10.1038/s41467-018-08019-7.
  9. Ibáñez, J.; Araque-Marin, M.; Paul, S.; Pera-Titus, M. Direct Amination of 1-Octanol with NH3 over Ag-Co/Al2O3: Promoting Effect of the H2 Pressure on the Reaction Rate. Chemical Engineering Journal 2019, 358, 1620 – 1630. https://doi.org/10.1016/j.cej.2018.10.021
  10. Weber, J. L.; Krans, N. A.; Hofmann, J. P.; Hensen, E. J. M.; Zecevic, J.; de Jongh, P. E.; de Jong, K. P. Effect of Proximity and Support Material on Deactivation of Bifunctional Catalysts for the Conversion of Synthesis Gas to Olefins and Aromatics. Catalysis Today 2019. https://doi.org/10.1016/j.cattod.2019.02.002.


  1. Bavykina, A.; Yarulina, I.; Gevers, L.; Hedhili, M. N.; Miao, X.; Ramirez, A.; Pustovarenko, O.; Dikhtiarenko, A.; Cadiau, A.; Ould-Chikh, S.; et al. Turning a Methanation Catalyst into a Methanol Producer: In-Co Catalysts for the Direct Hydrogenation of CO2 to Methanol. 2018. https://doi.org/10.26434/chemrxiv.7346693.v1.
  2. Desai, S. P.; Ye, J.; Zheng, J.; Ferrandon, M. S.; Webber, T. E.; Platero-Prats, A. E.; Duan, J.; Garcia-Holley, P.; Camaioni, D. M.; Chapman, K. W.; et al. Well-Defined Rhodium–Gallium Catalytic Sites in a Metal–Organic Framework: Promoter-Controlled Selectivity in Alkyne Semihydrogenation to E-Alkenes. J. Am. Chem. Soc. 2018, 140 (45), 15309–15318. https://doi.org/10.1021/jacs.8b08550.
  3. van Deelen, T. W.; Nijhuis, J. J.; Krans, N. A.; Zečević, J.; de Jong, K. P. Preparation of Cobalt Nanocrystals Supported on Metal Oxides To Study Particle Growth in Fischer–Tropsch Catalysts. ACS Catal. 2018, 8 (11), 10581–10589. https://doi.org/10.1021/acscatal.8b03094.
  4. Camacho-Bunquin, J.; Ferrandon, M. S.; Sohn, H.; Kropf, A. J.; Yang, C.; Wen, J.; Hackler, R. A.; Liu, C.; Celik, G.; Marshall, C. L.; et al. Atomically Precise Strategy to a PtZn Alloy Nanocluster Catalyst for the Deep Dehydrogenation of N-Butane to 1,3-Butadiene. ACS Catal. 2018, 8 (11), 10058–10063. https://doi.org/10.1021/acscatal.8b02794.
  5. Ramirez, A.; Gevers, L.; Bavykina, A.; Ould-Chikh, S.; Gascon, J. Metal Organic Framework-Derived Iron Catalysts for the Direct Hydrogenation of CO2 to Short Chain Olefins. ACS Catal. 2018, 8 (10), 9174–9182. https://doi.org/10.1021/acscatal.8b02892.
  6. van Zandvoort, I.; van Klink, G. P. M.; de Jong, E.; van der Waal, J. C. Selectivity and Stability of Zeolites [Ca]A and [Ag]A towards Ethylene Adsorption and Desorption from Complex Gas Mixtures. Microporous and Mesoporous Materials 2018, 263, 142–149. https://doi.org/10.1016/j.micromeso.2017.12.004.
  7. Camacho-Bunquin, J.; Ferrandon, M.; Sohn, H.; Yang, D.; Liu, C.; Ignacio-de Leon, P. A.; Perras, F. A.; Pruski, M.; Stair, P. C.; Delferro, M. Chemoselective Hydrogenation with Supported Organoplatinum(IV) Catalyst on Zn(II)-Modified Silica. J. Am. Chem. Soc. 2018, 140 (11), 3940–3951. https://doi.org/10.1021/jacs.7b11981.
  8. Roberts, S. J.; Fletcher, J. V.; Zhou, Y.; Luchters, N. T. J.; Fletcher, J. C. Q. Water-Gas Shift of Reformate Streams over Mono-Metallic PGM Catalysts. International Journal of Hydrogen Energy 2018, 43 (12), 6150–6157. https://doi.org/https://doi.org/10.1016/j.ijhydene.2018.01.193.
  9. Ras, E.-J. Model Based Catalyst Discovery from an Industrial Perspective. In Abstracts of Papers, 255th ACS National Meeting & Exposition, New Orleans, LA, United States, March 18-22, 2018; American Chemical Society, 2018; p CATL-18.
  10. Lama, S. M. G.; Weber, J. L.; Heil, T.; Hofmann, J. P.; Yan, R.; Jong, K. P. de; Oschatz, M. Tandem Promotion of Iron Catalysts by Sodium-Sulfur and Nitrogen-Doped Carbon Layers on Carbon Nanotube Supports for the Fischer-Tropsch to Olefins Synthesis. Applied Catalysis A: General 2018, 568, 213–220. https://doi.org/10.1016/j.apcata.2018.09.016
  11. Italiano, C.; Luchters, N. T. J.; Pino, L.; Fletcher, J. V.; Specchia, S.; Fletcher, J. C. Q.; Vita, A. High Specific Surface Area Supports for Highly Active Rh Catalysts: Syngas Production from Methane at High Space Velocity. International Journal of Hydrogen Energy 2018, 43 (26), 11755–11765. https://doi.org/10.1016/j.ijhydene.2018.01.136
  12. Chen, Y.; Batalha, N.; Marinova, M.; Impéror-Clerc, M.; Ma, C.; Ersen, O.; Baaziz, W.; Stewart, J. A.; Curulla-Ferré, D.; Khodakov, A. Y.; et al. Ruthenium Silica Nanoreactors with Varied Metal–Wall Distance for Efficient Control of Hydrocarbon Distribution in Fischer–Tropsch Synthesis. Journal of Catalysis 2018, 365, 429–439. https://doi.org/10.1016/j.jcat.2018.06.023
  13. Mejía, C. H.; Deelen, T. W. van; Jong, K. P. de. Activity Enhancement of Cobalt Catalysts by Tuning Metal-Support Interactions. Nature Communications 2018, 9 (1), 4459. https://doi.org/10.1038/s41467-018-06903-w
  14. Stöwe, K. Spezielle labortechnische Reaktoren: Hochdurchsatz-Reaktionstechnik. In Handbuch Chemische Reaktoren: Grundlagen und Anwendungen der Chemischen Reaktionstechnik; Reschetilowski, W., Ed.; Springer Reference Naturwissenschaften; Springer Berlin Heidelberg: Berlin, Heidelberg, 2018; pp 1–43. https://doi.org/10.1007/978-3-662-56444-8_45-1
  15. Weber, J. L.; Dugulan, I.; de Jongh, P. E.; de Jong, K. P. Bifunctional Catalysis for the Conversion of Synthesis Gas to Olefins and Aromatics. ChemCatChem 2018, 10 (5), 1107–1112. https://doi.org/10.1002/cctc.201701667


  1. Carvalho, A.; Marinova, M.; Batalha, N.; Marcilio, N. R.; Khodakov, A. Y.; Ordomsky, V. V. Design of Nanocomposites with Cobalt Encapsulated in the Zeolite Micropores for Selective Synthesis of Isoparaffins in Fischer–Tropsch Reaction. Catal. Sci. Technol. 2017, 7 (21), 5019–5027. https://doi.org/10.1039/C7CY01945A.
  2. Ordomsky, V. V.; Luo, Y.; Gu, B.; Carvalho, A.; Chernavskii, P. A.; Cheng, K.; Khodakov, A. Y. Soldering of Iron Catalysts for Direct Synthesis of Light Olefins from Syngas under Mild Reaction Conditions. ACS Catal. 2017, 7 (10), 6445–6452. https://doi.org/10.1021/acscatal.7b01307.
  3. Munirathinam, R.; Laurenti, D.; Uzio, D.; Pirngruber, G. D. Do Happy Catalyst Supports Work Better? Surface Coating of Silica and Titania Supports with (Poly)Dopamine and Their Application in Hydrotreating. Applied Catalysis A: General 2017, 544, 116–125. https://doi.org/10.1016/j.apcata.2017.07.008.
  4. Casavola, M.; Xie, J.; Meeldijk, J. D.; Krans, N. A.; Goryachev, A.; Hofmann, J. P.; Dugulan, A. I.; de Jong, K. P. Promoted Iron Nanocrystals Obtained via Ligand Exchange as Active and Selective Catalysts for Synthesis Gas Conversion. ACS Catal. 2017, 7 (8), 5121–5128. https://doi.org/10.1021/acscatal.7b00847.
  5. ALPHAZAN, T.; Bonduelle, A.; Legens, C.; Raybaud, P.; Coperet, C. Process for the Preparation of a Catalyst Based on Tungsten for Use in Hydrotreatment or in Hydrocracking. US9579642B2, February 28, 2017.
  6. Oschatz, M.; Hofmann, J. P.; van Deelen, T. W.; Lamme, W. S.; Krans, N. A.; Hensen, E. J. M.; de Jong, K. P. Effects of the Functionalization of the Ordered Mesoporous Carbon Support Surface on Iron Catalysts for the Fischer–Tropsch Synthesis of Lower Olefins. ChemCatChem 2017, 9 (4), 620–628. https://doi.org/10.1002/cctc.201601228.
  7. Ordomsky, V. V.; Khodakov, A. Y. Syngas to Chemicals: The Incorporation of Aldehydes into Fischer–Tropsch Synthesis. ChemCatChem 2017, 9 (6), 1040–1046. https://doi.org/10.1002/cctc.201601508.
  8. Moonen, R.; Alles, J.; Ras, E.; Harvey, C.; Moulijn, J. A. Performance Testing of Hydrodesulfurization Catalysts Using a Single-Pellet-String Reactor. Chemical Engineering & Technology 2017, 40 (11), 2025–2034. https://doi.org/10.1002/ceat.201700098.
  9. Mejía, C. H.; Otter, J. H. den; Weber, J. L.; Jong, K. P. de. Crystalline Niobia with Tailored Porosity as Support for Cobalt Catalysts for the Fischer–Tropsch Synthesis. Applied Catalysis A: General 2017, 548, 143–149. https://doi.org/10.1016/j.apcata.2017.07.016.
  10. Harmon, L.; Hallen, R.; Lilga, M.; Heijstra, B.; Palou-Rivera, I.; Handler, R. A Hybrid Catalytic Route to Fuels from Biomass Syngas; LanzaTech, Inc., Skokie, IL (United States), 2017.
  11. Carvalho, A. A. B. Investigation of Intrinsic Activity of Cobalt and Iron Based Fischer-Tropsch Catalysts Using Transient Kinetic Methods. 2017.


  1. Botes, G. F.; Bromfield, T. C.; Coetzer, R. L. J.; Crous, R.; Gibson, P.; Ferreira, A. C. Development of a Chemical Selective Iron Fischer Tropsch Catalyst. Catalysis Today 2016, 275, 40–48. https://doi.org/10.1016/j.cattod.2015.11.044.
  2. Ampelli, C.; Centi, G.; Genovese, C.; Papanikolaou, G.; Pizzi, R.; Perathoner, S.; van Putten, R.-J.; Schouten, K. J. P.; Gluhoi, A. C.; van der Waal, J. C. A Comparative Catalyst Evaluation for the Selective Oxidative Esterification of Furfural. Top Catal 2016, 59 (17), 1659–1667. https://doi.org/10.1007/s11244-016-0675-y.
  3. Subramanian, V.; Ordomsky, V. V.; Legras, B.; Cheng, K.; Cordier, C.; Chernavskii, P. A.; Khodakov, A. Y. Design of Iron Catalysts Supported on Carbon–Silica Composites with Enhanced Catalytic Performance in High-Temperature Fischer–Tropsch Synthesis. Catal. Sci. Technol. 2016, 6 (13), 4953–4961. https://doi.org/10.1039/C6CY00060F.
  4. Delgado, J. A.; Claver, C.; Castillón, S.; Curulla-Ferré, D.; Ordomsky, V. V.; Godard, C. Effect of Polymeric Stabilizers on Fischer–Tropsch Synthesis Catalyzed by Cobalt Nanoparticles Supported on TiO2. Journal of Molecular Catalysis A: Chemical 2016, 417, 43–52. https://doi.org/10.1016/j.molcata.2016.02.029.
  5. den Otter, J. H. Niobia-supported Cobalt Catalysts for Fischer-Tropsch Synthesis http://dspace.library.uu.nl/handle/1874/334105.
  6. Zhu, H.; Rosenfeld, D. C.; Harb, M.; Anjum, D. H.; Hedhili, M. N.; Ould-Chikh, S.; Basset, J.-M. Ni–M–O (M = Sn, Ti, W) Catalysts Prepared by a Dry Mixing Method for Oxidative Dehydrogenation of Ethane. ACS Catal. 2016, 6 (5), 2852–2866. https://doi.org/10.1021/acscatal.6b00044.
  7. Cheng, K.; Subramanian, V.; Carvalho, A.; Ordomsky, V. V.; Wang, Y.; Khodakov, A. Y. The Role of Carbon Pre-Coating for the Synthesis of Highly Efficient Cobalt Catalysts for Fischer–Tropsch Synthesis. Journal of Catalysis 2016, 337, 260–271. https://doi.org/10.1016/j.jcat.2016.02.019.
  8. Subramanian, V.; Cheng, K.; Lancelot, C.; Heyte, S.; Paul, S.; Moldovan, S.; Ersen, O.; Marinova, M.; Ordomsky, V. V.; Khodakov, A. Y. Nanoreactors: An Efficient Tool To Control the Chain-Length Distribution in Fischer–Tropsch Synthesis. ACS Catal. 2016, 6 (3), 1785–1792. https://doi.org/10.1021/acscatal.5b01596.
  9. den Otter, J. H.; Nijveld, S. R.; de Jong, K. P. Synergistic Promotion of Co/SiO2 Fischer–Tropsch Catalysts by Niobia and Platinum. ACS Catal. 2016, 6 (3), 1616–1623. https://doi.org/10.1021/acscatal.5b02418.
  10. Laveille, P.; Guillois, K.; Tuel, A.; Petit, C.; Basset, J.-M.; Caps, V. Durable PROX Catalyst Based on Gold Nanoparticles and Hydrophobic Silica. Chem. Commun. 2016, 52 (15), 3179–3182. https://doi.org/10.1039/C5CC09561A.
  11. van Putten, R.-J.; van der Waal, J. C.; Harmse, M.; van de Bovenkamp, H. H.; de Jong, E.; Heeres, H. J. A Comparative Study on the Reactivity of Various Ketohexoses to Furanics in Methanol. ChemSusChem 2016, 9 (Copyright (C) 2019 American Chemical Society (ACS). All Rights Reserved.), 1827–1834. https://doi.org/10.1002/cssc.201600252.
  12. Subramanian, V.; Zholobenko, V. L.; Cheng, K.; Lancelot, C.; Heyte, S.; Thuriot, J.; Paul, S.; Ordomsky, V. V.; Khodakov, A. Y. The Role of Steric Effects and Acidity in the Direct Synthesis of Iso-Paraffins from Syngas on Cobalt Zeolite Catalysts. ChemCatChem 2016, 8 (2), 380–389. https://doi.org/10.1002/cctc.201500777.
  13. Otter, J. H. den; Yoshida, H.; Ledesma, C.; Chen, D.; Jong, K. P. de. On the Superior Activity and Selectivity of PtCo/Nb2O5 Fischer Tropsch Catalysts. Journal of Catalysis 2016, 340, 270–275. https://doi.org/https://doi.org/10.1016/j.jcat.2016.05.025.
  14. Oschatz, M.; Lamme, W. S.; Xie, J.; Dugulan, A. I.; Jong, K. P. de. Ordered Mesoporous Materials as Supports for Stable Iron Catalysts in the Fischer–Tropsch Synthesis of Lower Olefins. ChemCatChem 2016, 8 (17), 2846–2852. https://doi.org/10.1002/cctc.201600492.
  15. Oschatz, M.; Krans, N.; Xie, J.; Jong, K. P. de. Systematic Variation of the Sodium/Sulfur Promoter Content on Carbon-Supported Iron Catalysts for the Fischer–Tropsch to Olefins Reaction. Journal of Energy Chemistry 2016, 25 (6), 985–993. https://doi.org/10.1016/j.jechem.2016.10.011.
  16. Oschatz, M.; Deelen, T. W. van; L. Weber, J.; S. Lamme, W.; Wang, G.; Goderis, B.; Verkinderen, O.; I. Dugulan, A.; Jong, K. P. de. Effects of Calcination and Activation Conditions on Ordered Mesoporous Carbon Supported Iron Catalysts for Production of Lower Olefins from Synthesis Gas. Catalysis Science & Technology 2016, 6 (24), 8464–8473. https://doi.org/10.1039/C6CY01251E.
  17. Ordomsky, V. V.; Carvalho, A.; Legras, B.; Paul, S.; Virginie, M.; Sushkevich, V. L.; Khodakov, A. Y. Effects of Co-Feeding with Nitrogen-Containing Compounds on the Performance of Supported Cobalt and Iron Catalysts in Fischer–Tropsch Synthesis. Catalysis Today 2016, 275, 84–93. https://doi.org/10.1016/j.cattod.2015.12.015.
  18. Murayama, T.; Katryniok, B.; Heyte, S.; Araque, M.; Ishikawa, S.; Dumeignil, F.; Paul, S.; Ueda, W. Role of Crystalline Structure in Allyl Alcohol Selective Oxidation over Mo3VOx Complex Metal Oxide Catalysts. ChemCatChem 2016, 8 (14), 2415–2420. https://doi.org/10.1002/cctc.201600430.
  19. Eschemann, T. O.; Oenema, J.; Jong, K. P. de. Effects of Noble Metal Promotion for Co/TiO2 Fischer-Tropsch Catalysts. Catalysis Today 2016, 261, 60–66. https://doi.org/10.1016/j.cattod.2015.06.016.
  20. Batista, A. T. F. Innovative Preparations of Heterogeneous Catalysts for the Production of (Bio) Fuels. 2016.


  1. Pizzi, R.; Van Putten, R.-J.; Brust, H.; Perathoner, S.; Centi, G.; Van der Waal, J. C. High-Throughput Screening of Heterogeneous Catalysts for the Conversion of Furfural to Bio-Based Fuel Components. Catalysts 2015, 5 (4), 2244–2257. https://doi.org/10.3390/catal5042244.
  2. Cheng, K.; Ordomsky, V. V.; Legras, B.; Virginie, M.; Paul, S.; Wang, Y.; Khodakov, A. Y. Sodium-Promoted Iron Catalysts Prepared on Different Supports for High Temperature Fischer–Tropsch Synthesis. Applied Catalysis A: General 2015, 502, 204–214. https://doi.org/10.1016/j.apcata.2015.06.010.
  3. Eschemann, T. O.; Lamme, W. S.; Manchester, R. L.; Parmentier, T. E.; Cognigni, A.; Rønning, M.; de Jong, K. P. Effect of Support Surface Treatment on the Synthesis, Structure, and Performance of Co/CNT Fischer–Tropsch Catalysts. Journal of Catalysis 2015, 328, 130–138. https://doi.org/10.1016/j.jcat.2014.12.010.
  4. Zhu, H.; Laveille, P.; Rosenfeld, D. C.; Hedhili, M. N.; Basset, J.-M. A High-Throughput Reactor System for Optimization of Mo–V–Nb Mixed Oxide Catalyst Composition in Ethane ODH. Catal. Sci. Technol. 2015, 5 (8), 4164–4173. https://doi.org/10.1039/C5CY00488H.
  5. Eschemann, T. O.; de Jong, K. P. Deactivation Behavior of Co/TiO2 Catalysts during Fischer–Tropsch Synthesis. ACS Catal. 2015, 5 (6), 3181–3188. https://doi.org/10.1021/acscatal.5b00268.
  6. Paul, S.; Heyte, S.; Katryniok, B.; Garcia-Sancho, C.; Maireles-Torres, P.; Dumeignil, F. REALCAT: A New Platform to Bring Catalysis to the Lightspeed. Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 2015, 70 (3), 455–462. https://doi.org/10.2516/ogst/2014052.
  7. Magendie, G.; Guichard, B.; Espinat, D. Effect of Acidity, Hydrogenating Phases and Texture Properties of Catalysts on the Evolution of Asphaltenes Structures during Reside Hydroconversion. Catalysis Today 2015, 258, 304–318. https://doi.org/10.1016/j.cattod.2014.10.023.
  8. Cheng, K.; Virginie, M.; Ordomsky, V. V.; Cordier, C.; Chernavskii, P. A.; Ivantsov, M. I.; Paul, S.; Wang, Y.; Khodakov, A. Y. Pore Size Effects in High-Temperature Fischer–Tropsch Synthesis over Supported Iron Catalysts. Journal of Catalysis 2015, 328, 139–150. https://doi.org/10.1016/j.jcat.2014.12.007.


  1. Alphazan, T.; Bonduelle-Skrzypczak, A.; Legens, C.; Gay, A.-S.; Boudene, Z.; Girleanu, M.; Ersen, O.; Copéret, C.; Raybaud, P. Highly Active Nonpromoted Hydrotreating Catalysts through the Controlled Growth of a Supported Hexagonal WS2 Phase. ACS Catal. 2014, 4 (12), 4320–4331. https://doi.org/10.1021/cs501311m.
  2. Munnik, P.; Krans, N. A.; de Jongh, P. E.; de Jong, K. P. Effects of Drying Conditions on the Synthesis of Co/SiO2 and Co/Al2O3 Fischer–Tropsch Catalysts. ACS Catal. 2014, 4 (9), 3219–3226. https://doi.org/10.1021/cs5006772.
  3. Eschemann, T. O.; Bitter, J. H.; de Jong, K. P. Effects of Loading and Synthesis Method of Titania-Supported Cobalt Catalysts for Fischer–Tropsch Synthesis. Catalysis Today 2014, 228, 89–95. https://doi.org/10.1016/j.cattod.2013.10.041.
  4. Munnik, P.; de Jongh, P. E.; de Jong, K. P. Control and Impact of the Nanoscale Distribution of Supported Cobalt Particles Used in Fischer–Tropsch Catalysis. J. Am. Chem. Soc. 2014, 136 (20), 7333–7340. https://doi.org/10.1021/ja500436y.
  5. Hagemeyer, A.; Volpe, A. F. Modern Applications of High Throughput R&D in Heterogeneous Catalysis; Bentham Science Publishers, 2014.
  6. Realistic Catalyst Testing in High-Throughput Parallel Small- Scale Reactor Systems. In Modern Applications of High Throughput R&D in Heterogeneous Catalysis; Hagemeyer, A., Volpe, A., Eds.; BENTHAM SCIENCE PUBLISHERS, 2014; pp 197–226. https://doi.org/10.2174/9781608058723114010009.
  7. den Otter, J. H.; de Jong, K. P. Highly Selective and Active Niobia-Supported Cobalt Catalysts for Fischer–Tropsch Synthesis. Top Catal 2014, 57 (6), 445–450. https://doi.org/10.1007/s11244-013-0200-5.
  8. Zhu, H.; Anjum, D. H.; Wang, Q.; Abou-Hamad, E.; Emsley, L.; Dong, H.; Laveille, P.; Li, L.; Samal, A. K.; Basset, J.-M. Sn Surface-Enriched Pt–Sn Bimetallic Nanoparticles as a Selective and Stable Catalyst for Propane Dehydrogenation. Journal of Catalysis 2014, 320, 52–62. https://doi.org/10.1016/j.jcat.2014.09.013.
  9. van der Waal, J. C.; Ras, E.-J.; Lok, C. M.; Moonen, R.; van der Puil, N. Realistic Catalyst Testing in High-Throughput Parallel Small-Scale Reactor Systems. Modern Applications of High Throughput R&D in Heterogeneous Catalysis 2014, 197.
  10. Stöwe, K.; Hammes, M.; Valtchev, M.; Roth, M.; Maier, W. F. Parallel Fixed Bed Microreactors for High-Throughput Screening with Special Focus on High Corrosion Resistance and New Deacon Catalysts for Chlorine Production. Modern Applications of High Throughput R&D in Heterogeneous Catalysis 2014, 118.
  11. Ras, E.-J.; Rothenberg, G. Heterogeneous Catalyst Discovery Using 21st Century Tools: A Tutorial. RSC Adv. 2014, 4 (Copyright (C) 2019 American Chemical Society (ACS). All Rights Reserved.), 5963–5974. https://doi.org/10.1039/c3ra45852k.
  12. Ras, E.-J.; Gomez-Quero, S. Oxidative Coupling of Methane in Small Scale Parallel Reactors. Top. Catal. 2014, 57 (Copyright (C) 2019 American Chemical Society (ACS). All Rights Reserved.), 1392–1399. https://doi.org/10.1007/s11244-014-0310-8.
  13. Lok, C. M. The 2014 Murray Raney Award Lecture: Architecture and Preparation of Supported Nickel Catalysts. Top. Catal. 2014, 57 (Copyright (C) 2019 American Chemical Society (ACS). All Rights Reserved.), 1318–1324. https://doi.org/10.1007/s11244-014-0298-0.
  14. Kleist, W.; Grunwaldt, J.-D. 9.5: High Output Catalyst Development in Heterogeneous Gas Phase Catalysis. Modern Applications of High Throughput R&D in Heterogeneous Catalysis 2014, 357.
  15. Griboval-Constant, A.; Butel, A.; Ordomsky, V. V.; Chernavskii, P. A.; Khodakov, A. Y. Cobalt and Iron Species in Alumina Supported Bimetallic Catalysts for Fischer–Tropsch Reaction. Applied Catalysis A: General 2014, 481, 116–126. https://doi.org/10.1016/j.apcata.2014.04.047.
  16. Cheng, K.; Ordomsky, V. V.; Virginie, M.; Legras, B.; Chernavskii, P. A.; Kazak, V. O.; Cordier, C.; Paul, S.; Wang, Y.; Khodakov, A. Y. Support Effects in High Temperature Fischer-Tropsch Synthesis on Iron Catalysts. Applied Catalysis A: General 2014, 488, 66–77. https://doi.org/10.1016/j.apcata.2014.09.033.
  17. Bonrath, W.; Medlock, J. 9.3: Parallel Hydrogenation Experiments in the Fine Chemicals Industry. Modern Applications of High Throughput R&D in Heterogeneous Catalysis 2014, 341.


  1. van Putten, R.-J.; Soetedjo, J. N. M.; Pidko, E. A.; van der Waal, J. C.; Hensen, E. J. M.; de Jong, E.; Heeres, H. J. Dehydration of Different Ketoses and Aldoses to 5-Hydroxymethylfurfural. ChemSusChem 2013, 6 (Copyright (C) 2019 American Chemical Society (ACS). All Rights Reserved.), 1681–1687. https://doi.org/10.1002/cssc.201300345.
  2. Ras, E.-J.; Louwerse, M. J.; Mittelmeijer-Hazeleger, M. C.; Rothenberg, G. Predicting Adsorption on Metals: Simple yet Effective Descriptors for Surface Catalysis. Phys. Chem. Chem. Phys. 2013, 15 (Copyright (C) 2019 American Chemical Society (ACS). All Rights Reserved.), 4436–4443. https://doi.org/10.1039/c3cp42965b.
  3. Ras, E.-J. A Workflow for Process Design–Using Parallel Reactor Equipment Beyond Screening. Catalytic Process Development for Renewable Materials 2013, 119–148.https://doi.org/10.1002/9783527656639.ch5
  4. Magendie, G.; Guichard, B.; Chaumonnot, A.; Quoineaud, A. A.; Legens, C.; Espinat, D. Toward a Better Understanding of Residue Hydroconversion Catalysts Using NiMo Catalysts Supported over Silica Grafted Al2O3. Applied Catalysis A: General 2013, 468, 216–229. https://doi.org/10.1016/j.apcata.2013.08.044.
  5. Laveille, P.; Biausque, G.; Zhu, H.; Basset, J.-M.; Caps, V. A High-Throughput Study of the Redox Properties of Nb-Ni Oxide Catalysts by Low Temperature CO Oxidation: Implications in Ethane ODH. Catalysis Today 2013, 203, 3–9. https://doi.org/10.1016/j.cattod.2012.05.020.


  1. Ras, E.-J.; Louwerse, M. J.; Rothenberg, G. New Tricks by Very Old Dogs: Predicting the Catalytic Hydrogenation of HMF Derivatives Using Slater-Type Orbitals. Catal. Sci. Technol. 2012, 2 (12), 2456–2464. https://doi.org/10.1039/C2CY20193C.


  1. van der Waal, J. K.; Klaus, G.; Smit, M.; Lok, C. M. High-Throughput Experimentation in Syngas Based Research. Catal. Today 2011, 171 (Copyright (C) 2019 American Chemical Society (ACS). All Rights Reserved.), 207–210. https://doi.org/10.1016/j.cattod.2011.02.019.
  2. Van der Waal, J. C.; Van Putten, R.-J.; Ras, E.-J.; Lok, M.; Gruter, G.-J.; Brasz, M.; De Jong, E. The High-Throughput Research Approach to Biorefineries – a Powerful Tool for Studying the Complexity of Catalytic Processes. Cellul. Chem. Technol. 2011, 45 (Copyright (C) 2019 American Chemical Society (ACS). All Rights Reserved.), 461–466.
  3. Klaus, G.; Smit, M.; Perez de Santana, A. Hydroprocessing Screening Capabilities Using Avantium’s Parallel Fixed Bed Technology. In Abstracts of Papers, 242nd ACS National Meeting & Exposition, Denver, CO, United States, August 28-September 1, 2011; American Chemical Society, 2011; p PETR-92.
  4. Imhof, P.; de Santana, A. P. Accelerated Catalytic Processing of Fossil and Biorenewable Feedstocks Using Avantium’s Technology and Methodologies. In AIChE Annu. Meet., Conf. Proc.; American Institute of Chemical Engineers, 2011; pp 279g/1-279g/8.


  1. Ras, E.-J.; McKay, B.; Rothenberg, G. Understanding Catalytic Biomass Conversion Through Data Mining. Top. Catal. 2010, 53 (Copyright (C) 2019 American Chemical Society (ACS). All Rights Reserved.), 1202–1208. https://doi.org/10.1007/s11244-010-9563-z.
  2. Gluhoi, A. C.; Bakker, J. W.; Nieuwenhuys, B. E. Gold, Still a Surprising Catalyst: Selective Hydrogenation of Acetylene to Ethylene over Au Nanoparticles. Catal. Today 2010, 154 (Copyright (C) 2019 American Chemical Society (ACS). All Rights Reserved.), 13–20. https://doi.org/10.1016/j.cattod.2010.02.021


  1. Ras, E.-J.; Maisuls, S.; Haesakkers, P.; Gruter, G.-J.; Rothenberg, G. Selective Hydrogenation of 5-Ethoxymethylfurfural over Alumina-Supported Heterogeneous Catalysts. Adv. Synth. Catal. 2009, 351 (Copyright (C) 2019 American Chemical Society (ACS). All Rights Reserved.), 3175–3185. https://doi.org/10.1002/adsc.200900526.


  1. Veum, L.; Pereira, S. R. M.; Waal, J. C. van der; Hanefeld, U. Catalytic Hydrogenation of Cyanohydrin Esters as a Novel Approach to N-Acylated β-Amino Alcohols – Reaction Optimisation by a Design of Experiment Approach. European Journal of Organic Chemistry 2006, 2006 (7), 1664–1671. https://doi.org/10.1002/ejoc.200500870.
  2. JÄGER, P. Avantium: Accelerate Your R&D! chimica oggi• Chemistry Today 2006, 24 (5), 5.
  3. Van der Linden, J. B.; Ras, E.-J.; Hooijschuur, S. M.; Klaus, G. M.; Luchters, N. T.; Dani, P.; Verspui, G.; Smith, A. A.; Damen, E. W. P.; McKay, B.; et al. Asymmetric Catalytic Ketone Hydrogenation: Relating Substrate Structure and Product Enantiomeric Excess Using QSPR. QSAR Comb. Sci. 2005, 24 (Copyright (C) 2019 American Chemical Society (ACS). All Rights Reserved.), 94–98. https://doi.org/10.1002/qsar.200420060.


  1. Simons, C.; Hanefeld, U.; Arends, I. W. C. E.; Sheldon, R. A.; Maschmeyer, T. Noncovalent Anchoring of Asymmetric Hydrogenation Catalysts on a New Mesoporous Aluminosilicate: Application and Solvent Effects. Chemistry – A European Journal 2004, 10 (22), 5829–5835. https://doi.org/10.1002/chem.200400528.
  2. Meerendonk, W. J. van; Duchateau, R.; Koning, C. E.; Gruter, G.-J. M. High-Throughput Automated Parallel Evaluation of Zinc-Based Catalysts for the Copolymerization of CHO and CO2 to Polycarbonates. Macromolecular Rapid Communications 2004, 25 (1), 382–386. https://doi.org/10.1002/marc.200300255.
  3. Hoogenraad, M.; van der Linden, J. B.; Smith, A. A.; Hughes, B.; Derrick, A. M.; Harris, L. J.; Higginson, P. D.; Pettman, A. J. Accelerated Process Development of Pharmaceuticals: Selective Catalytic Hydrogenations of Nitro Compounds Containing Other Functionalities. Org. Process Res. Dev. 2004, 8 (Copyright (C) 2019 American Chemical Society (ACS). All Rights Reserved.), 469–476. https://doi.org/10.1021/op0341667.


  1. Maxwell, I. E.; van den Brink, P.; Downing, R. S.; Sijpkes, A. H.; Gomez, S.; Maschmeyer, T. High-Throughput Technologies to Enhance Innovation in Catalysis. Top. Catal. 2003, 24 (Copyright (C) 2019 American Chemical Society (ACS). All Rights Reserved.), 125–135. https://doi.org/10.1023/B:TOCA.0000003084.52115.fa.

Is your publication missing?

Pin It on Pinterest

Share This